Бесконтактные измерения в электроразведке методом сопротивлений; опыт математического моделирования

А.Д. Каринский¹, В.А. Шевнин², А.А. Иванов¹

¹Российский государственный геологоразведочный университет имени Серго Орджоникидзе (МГРИ),

akarinski@mail.ru, biwolf@mail.ru.

²Московский государственный университет имени Ломоносова (МГУ), shevninvlad@yandex.ru.

Аннотация

В работе представлены полученные на основе решения прямой задачи электродинамики результаты численных расчётов для модели, соответствующей возможным условиям бесконтактных измерений в электроразведке методом сопротивлений. Приведены результаты моделирования для предельной дипольно-осевой установки, расположенной на небольшой высоте *h* над однородным проводящим полупространством. Расчёты выполнены при частоте 16 кГц, применённой в нескольких видах электроразведочной аппаратуры для бесконтактных измерений. Показано, что по сравнению с применяемой сейчас методикой при не очень высоком удельном электрическом сопротивлении проводящей среды более эффективным может быть определение значения кажущегося удельного электрического сопротивления ρ_{κ} по реактивной составляющей напряжения электрического поля в измерительной линии *MN*, меняющейся синфазно с электрическим током *I* в токовой линии *AB*.

Ключевые слова: метод сопротивлений; бесконтактные измерения; моделирование

Введение

В 70-х годах XX-го века были начаты исследования целью обоснования С бесконтактных возможности применения измерений в электроразведке методом сопротивлений. Необходимость применения такой модификации возникает при проведении измерений методами сопротивлений в зонах многолетнемёрзлых пород, скальных грунтов, при наличии снежного покрова, либо, например, такого непроводящего искусственного покрытия, как асфальт или бетон. Кроме того, отсутствие необходимости заземления токовых (А, В) и измерительных (*M*, *N*) электродов позволяет значительно ускорить процесс измерений. Некоторые результаты таких исследований были опубликованы, например, в работах [Тимофеев, Бяшков, 1976], [Нахабцев и др., 1985].

Методы

Теоретическое обоснование применения бесконтактных измерений и результатов интерпретации получаемых основывалось "котосто" не на решении соответствующей прямой задачи электродинамики, а на приближённых подходах. И, судя по недавним публикациям, положение с теоретическим обоснованием метода до сих пор существенно не изменилось. Например, часть работы [Груздев и др., 2020] посвящена обоснованию тех ограничений, которые имеет применяемая приближённая методика расчётов.

В этой работе представлены некоторые, полученные совсем недавно на основе "строгого" решения соответствующей прямой электродинамики. задачи результаты для математического моделирования расположенной на небольшой высоте h над однородным проводящим полупространством предельной дипольно осевой установки ВАМИ.

Очевидно, проведение что бесконтактных измерений в методах сопротивления возможно лишь при переменном токе І в питающей линии АВ. Некоторые результаты математического моделирования при переменном токе $I=I_0 \cdot \cos(2\pi \cdot f \cdot t)$ в электроразведке методом сопротивлений и каротаже КС, были приведены в работах [Kaufman et al, 1996], [Каринский, 1998], [Каринский, Шевнин, 2001, 2020, a, 2020, б]. В [Каринский, Шевнин, 2001] статье были приведены решение прямой задачи электродинамики и полученные на его основе результаты моделирования для случая, когда линия AB переменного тока лежит на поверхности "двухслойного" проводящего получения полупространства. Основой для решения задачи послужила методика, описанная в книге [Заборовский, 1960]. Эта же методика была применена при получении приведенных ниже результатов моделирования.

На рисунке 1 показана модель, для которой были проведены расчёты. Горизонтальная плоскость *S* разделяет полупространства *V*₁ и *V*₂. Генераторный (*AB*) и измерительный (*MN*) диполи расположены в

полупространстве V₁ на одной прямой, параллельной оси Х, на высоте h над границей S. Компоненту E_x электрического поля **E**, которой пропорционально напряжение Е МЛ поля Е в предельно короткой измерительной линии MN, определяет несобственный интеграл в смысле главного значения (см. [Альпин и др., 2020]. с. 96-101). Подынтегральная функция содержит функции Бесселя первого рода нулевого и первого порядка. Приведенные на рисунках 2, 3 значения кажущегося удельного электрического сопротивления $\rho_{\kappa}(E_{x})$ для предельной дипольно-осевой установки определены по формулам: $\rho_{\kappa}(E_x) = K \cdot |E_x|/I_0$, $K=\pi x^3$, где $|E_x|$ - амплитуда компоненты E_x , а \tilde{K} коэффициент расположенной на поверхности проводящего полупространства предельной дипольно-осевой установки.

Результаты

Ha рисунке 2 представлены зависимости $\rho_{\kappa}(E_x)$ от разноса x при частоте *f*=16 кГц, удельном электрическом сопротивлении ρ₂=100 Ом·м И нескольких значениях высоты *h*. Заметим, что 16 кГц - это та "рабочая" частота, которая была выбрана для нескольких видов аппаратуры при бесконтактных измерениях в методах сопротивлений. При наших расчётах была задана диэлектрическая проницаемость ε_2 =10. Хотя легко оценить то, что при частоте 16 кГц и значениях ρ_2 менее первых десятков тысяч Ом м выбор величины $\tilde{\epsilon_2}$ - не существенен, так как при любых, реальных для горных пород значениях ϵ_2 и $\rho_2 < 10^4$ Ом м можно пренебречь влиянием на результаты расчётов токов смещения в нижнем полупространстве.

Рисунок 2. Зависимости ρ_κ(*E*_x) от разноса *x* при нескольких значениях высоты *h*

Полученные результаты моделирования показали, например, что при *h*=5 см величина $\rho_{\kappa} \approx \rho_2$, если разнос $x \approx 15$ м. При *h*=20 см значения ρ_{κ} значительно больше ρ_2 при любых разносах *x*. Если *x*>25 - 30 м, то значения ρ_{κ} перестают зависеть от *h*. Это - известная при проведении измерений на переменном токе в методе ВЭЗ индукционная асимптота.

На рисунке 3 показаны зависимости $\rho_{\kappa}(E_x)$ от разноса x при фиксированной высоте h=5 см (a) и h=10 см (б) и при трёх значениях удельного электрического сопротивления р₂. Из приведенных на этом рисунке результатов моделирования следует, что при частоте 16 кГц, указанных выше высотах *h* и разносах *x* порядка 10-и - 20-и метров величина р_к≈р₂ только при "достаточно высоких" значениях р₂ (порядка 1000 Ом.м. как на рисунке 3, или более). При более низких значениях р₂ (часто типичных для части геологического верхней разреза "немёрзлых" осадочных горных пород) значения рк могут не иметь "тесной связи" с удельным электрическим сопротивлением ρ_2 .

Рисунок 3. Зависимости $\rho_{\kappa}(E_x)$ от разноса x при нескольких значениях ρ_2

Значения $\rho_{\kappa}(|\text{Re }E_{x}|)$ на рисунке 4 определены по амплитуде |Re Ex| реактивной составляющей Re $E_x = E_x \cdot \cos \varphi(E_x)$, меняющейся синфазно, либо в противофазе, с током / в AB. То генераторном диполе есть $\rho_{\kappa}(|\text{Re }E_{x}|)=K\cdot|\text{Re }E_{x}|/I_{0}$. Здесь $\phi(E_{x})$ - начальная фаза компоненты Е_x, либо (в более общем случае) разность фаз между компонентой Е_x и гармонически меняющемся током І. Некоторые особенности графиков на этом рисунке связаны с тем, что функция $\operatorname{Re} E_x(x)$ не является знакопостоянной. Значения x, при которых составляющая Re Ex меняет знак, отмечены на этом рисунке вертикальными пунктирными линиями. Результаты расчётов, представленные на рисунке 4, a, получены при h=5 см, а на рисунке 4, \tilde{b} при h=10 см.

Рисунок 4. Зависимости ρ_κ(|Re*E*_x|) от разноса *x* при нескольких значениях ρ₂

При сравнении рисунка 4 с рисунками 2, 3 видно, что определение рк по значению |Re E_x| при невысоких значениях p₂ имеет явные преимущества по сравнению С определением величине ρ_{κ} по $|E_x|$. B соответствии с рисунком 4 при заданной частоте f можно выбрать такой разнос x, чтобы при пределах широких изменения удельного электрического сопротивления 02 значения $\rho_{\kappa}(|\text{Re }E_{x}|)$ бпизки были к ρ2, т. е. (применительно к показанной на рисунке 1 модели) эти значения $\rho_{\kappa}(|\text{Re }E_{\kappa}|)$ характеризовали истинное удельное электрическое сопротивление проводящей среды. Из показанных на рисунке 4 результатов моделирования следует, что при частоте 16 кГц, *h*=5 - 10 см и 10 Ом⋅м≤р₂≤1000 Ом⋅м таким "оптимальным" является разнос *х*≈8 - 10 м.

На рисунке 5 показано то, как зависит от удельного электрического сопротивления ρ_2 отношение ρ_{κ}/ρ_2 . Понятно, что если это отношение близко к единице, то (применительно к показанной на рисунке 1 модели) величина ρ_{κ} характеризует истинное удельное сопротивление ρ_2 проводящей среды.

Сплошные линии отвечают случаю, когда величины ρ_к определены по амплитуде компоненты E_x. Видим, что при различных разносах х и невысоких значения р₂ эти величины рк не отражают истинное удельное электрическое сопротивление проводящей среды. Например, при указанных на рисунке 5 значениях f, h и при x=10 м эти значения рк близки к ρ_2 при пределах изменения ρ_2 от первых тысяч Ом-м до десятков тысяч Ом-м. При больших разносах х эти пределы шире, но с увеличением разноса уменьшается "детальность исследования" верхней части разреза при электропрофилировании методом сопротивлений. Кроме того, в этом случае есть выхода» индукционную «опасность на асимптоту.

Рисунок 5. Зависимости отношения ρ_{κ}/ρ_2 от удельного электрического сопротивления ρ_2

Штрихпунктирной линией на рисунке 5 показана зависимость отношения ρ_{κ}/ρ_2 от ρ_2 при определении ρ_{κ} по реактивной составляющей Re E_x компоненты E_x . При тех значениях f и h, при которых были проведены расчёты, определённые по этой составляющей значения ρ_{κ} близки к ρ_2 при пределах изменения ρ₂ от десяти Ом⋅м до первых десятков тысяч Ом.м. Это означает, что определение ок по Re E_x может составляющей позволить расширить значительно возможности применения бесконтактной модификации электропрофилирования в электроразведке

Заметим ещё, что аномально низкие значения рк при удельном электрическом сопротивлении ρ_2 выше первых десятков тысяч Ом⋅м обусловлены влиянием на электромагнитное поле токов смещения в проводящем полупространстве. Не сложно частоте *f*=16 кГц оценить, что при И диэлектрической ε₂=10 проницаемости соответствующих амплитуды компонент векторов плотности тока смещения и плотности проводимости тока одинаковы, если ρ₂≈100000 Ом⋅м.

На рисунке 6 показаны зависимости рк

от высоты *h* при пределах именения ρ_2 от 20-и Ом·м до 500-от Ом·м. На этом рисунке высота *h* меняется от нуля до 30-и сантиметров. Показанные сплошными линиями значения ρ_{κ} определены «традиционным» способом, а значения ρ_{κ} на штрих-пунктирных линиях определены по синфазной току / реактивной составляющей Re E_x .

В соответствии С полученными результатами моделирования, как нам кажется, не должно вызывать сомнений то, что при бесконтактных измерениях в электроразведке методом сопротивлений определение ρ_{κ} по составляющей Re Ex (либо по составляющей напряжения Re E_{MN} электрического поля в "непредельной" электроразведочной установке) может позволить значительно расширить область применения бесконтактной модификации электропрофилирования в электроразведке методом сопротивлений.

Отметим ещё, что в более близкой к реальности, чем показаная на рисунке 1, 1D - модели среды, содержащей несколько горизонтальных границ, при моделировании можно воспользоваться при численных расчётах всё тем же, применённым нами, алгоритмом. Но при этом надо уделить время решению системы (4*n*) алгебраических уравнений с (4n) числом неизвестных, где n число плоско-параллельных (горизонтальных) границ, которые "содержит" 1D-модель среды.

Выводы

Проведено математическое моделирование для возможных условий при бесконтактных измерениях в электроразведке методом сопротивлений. Результаты моделирования показали, что при не очень высоких значениях удельного электрического сопротивления ρ_2 проводящей среды при принятой методике определения кажущегося удельного электрического сопротивления ρ_{κ} величины ρ_{κ} значительно отличаются от ρ_2 . В таких случаях целесообразно определять ρ_{κ} по реактивной составляющей напряжения Re E_{MN}

в измерительной линии *MN*, меняющейся синфазно с током *I* в генераторной линии *AB*.

Литература

Альпин Л. М., Даев Д. С., Каринский А. Д. Теория полей, применяемых в разведочной геофизике. Учебник для ВУЗов. Часть IV. Глава "Переменное шестая электромагнитное поле". Глава седьмая "Прямая переменного задача теории электромагнитного поля". 2020. 104 c. [Электронный ресурс/Текст].

https://elibrary.ru/item.asp?id=43803479.

- Груздев А.И., Бобачев А.А., Шевнин В.А. Определение области применения бесконтактной технологии метода сопротивлений. Вестник Московского университета. Серия 4: Геология, издательство Изд-во Моск. ун-та (М.), 2020, № 5, c. 100-106.
- Заборовский А. И. Переменные электромагнитные поля в электроразведке. М., Изд-во МГУ, 1960, 186 с.
- Каринский А. Д. Решение осесимметричной прямой задачи теории каротажа КС при возбуждении поля переменным током. // Геофизика. 1998, № 2, С. 20-28.
- Каринский А. Д., Шевнин В. А. Влияние индукции на результаты ВЭЗ на переменном токе. // Геофизика. 2001, № 5, с. 50-56.
- Каринский А. Д., Шевнин В. А. К влиянию расстояния между линиями АВ и МN в методе вертикальных электрических зондирований (ВЭЗ). В сборнике: Разведочная геофизика и геоинформатика. Материалы Всероссийской научно-практической конференции. 2020. С. 37-41.https://elibrary.ru/item.asp?id=42729946
- Каринский А.Д., Шевнин В.А. Влияние кулоновой и индукционных составляющих электрического поля на результаты ВЭЗ на переменном токе. // Теория и практика разведочной и промысловой геофизики: сборник научных трудов / гл. ред. В. И. Костицын; Пермский государственный исследовательский национальный университет. Пермь, ноябрь 2020. 295 с. С. 117 123.
- Нахабцев А. С., Сапожников Б. Г., Яблучанский А. И., Электропрофилирование с незаземленными рабочими линиями 1985. Л., Недра, 96 с.

- Тимофеев В. М., Бяшков Г. П. О некоторых путях повышения эффективности электропрофилирования при инженерно-геокриологической съемке. – Тр. ВСЕГИНГЕО, вып. 81, 1976, с. 28-36.
- Kaufman, A. A., Karinsky, A. D., Wightman, E. W., Influence of inductive effect on measurements of resistivity through casing // Geophysics. Vol. 61, 1996, Pp. 34-42.